Abstract

AimsThis study aimed to establish a yeast‐based screening system for potential compounds that can alleviate the toxicity of α‐synuclein (α‐syn), a neuropathological hallmark of Parkinson’s disease, either inhibition of α‐syn aggregation or promotion of ubiquitin‐mediated degradation of α‐syn.Methods and ResultsA powerful yeast‐based screening assay using the rsp5 A401E‐mutant strain, which is hypersensitive to α‐syn aggregation, was established by two‐step gene replacement and further overexpressed the GFP‐fused α‐syn in the drug‐sensitive yeast strain with a galactose‐inducible multicopy plasmid. The rsp5 A401E‐mutant strain treated with baicalein, a known α‐syn aggregation inhibitor, showed better α‐syn toxicity alleviation than the same background wild type strain as accessed by comparison on the reduction kinetics of viable dye resazurin fluorometrically (λex540/λem590 nm). The rsp5 A401E‐mutant yeast‐based assay system showed high sensitivity as it could detect as low as 3.13 µmol l−1 baicalein, the concentration that lower than previously report detected by the in vitro assay.ConclusionsOur yeast‐based system has been effective for screening potential compounds that can alleviate α‐syn toxicity with high sensitivity and specificity.Significance and Impact of the StudyYeast‐based assay system can be used to discover novel neuroprotective drug candidates which may be either efficiently suppress‐α‐syn aggregation or enhance ubiquitin‐dependent degradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.