Abstract

This paper describes the development of a fault diagnosis method for identifying different fault conditions in the rolling bearings and gears of wind turbines. For the fault signal, the compressed sensing (CS) technology is used to perform noise reduction and feature extraction. The noise reduction process consists of sparse compression and reconstruction of the signal. After the data is processed by the compressed sensing technology, the noise and redundant parts of the signal can be greatly removed, and the real operating state signal of the wind turbine can be restored to the maximum. The fault diagnosis scheme is based on a combination of deep transfer learning and convolutional neural network (DTL-CNN), which is able to perform fault type identification with a small batch of rolling bearing data samples and gear samples. In this study, a new CNN structure was developed and the structure was used to achieve bearing-to-bearing and bearing-to-gear transfer fault diagnosis. Finally, the reliability and superiority of the proposed method in wind turbine rolling bearing and gear fault diagnosis are shown by the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.