Abstract
With the development of condition monitoring technology, the data collected by sensors are voluminous and much faster than before. The cloud computing technology is a good solution for big data processing, it is therefore very suitable to be applied in the condition monitoring of the wind turbine, especially for data-driven model-based condition monitoring methods. In order to solve this problem, a novel wind turbine condition monitoring method based on cloud computing is proposed in this paper. A data-driven model-based condition monitoring (CM) method by using hierarchical extreme learning machine (H-ELM) algorithm is adopted to achieve fault detection of the gearbox in the wind turbine, which has better performance than traditional ELM method. Then, compressed sensing (CS) method is applied to compress the first hidden layer output that will be uploaded to the cloud for further calculation. The proposed method is not only able to detect the faults effectively, but also considering data upload quantity reduction and data security. The case study validates the effectiveness of the proposed method. Consequently, it is effective and can also enhance economic benefit and operating efficiency of the wind farm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.