Abstract

To provide long-term ambulatory cardiopulmonary and respiratory support for adult patients, a novel wearable artificial pump-lung device has been developed. The design features and in vitro and acute in vivo performance of this device are reported. This device features a uniquely designed hollow-fiber membrane bundle integrated with a magnetically levitated impeller that together form one ultracompact pump-lung device, which can be placed like current paracorporeal ventricular assist devices to allow ambulatory support. The device is 117 mm in length and 89 mm in diameter and has a priming volume of 115 ml. In vitro hydrodynamic, gas transfer and biocompatibility experiments were carried out in mock flow-loops using ovine blood. Acute in vivo characterization was conducted in an ovine model by surgically implanting the device between right atrium and pulmonary artery. The in vitro results show that the device with a membrane surface area of 0.8 m(2) was capable of pumping blood from 1 to 4 liters/min against a wide range of pressures and transferring oxygen at a rate of up to 180 ml/min at a blood flow of 3.5 liters/min. Standard hemolysis tests demonstrated low hemolysis at the targeted operating condition. The acute in vivo results also confirmed that the device can provide sufficient oxygen transfer with excellent biocompatibility. Based on in vitro and acute in vivo study findings, this highly integrated wearable pump-lung device can provide efficient respiratory support with good biocompatibility and it is ready for long-term evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call