Abstract
The cross-hatched structural evolution of isotactic polypropylene (iPP) during uniaxial tensile deformation was investigated with in situ synchrotron radiation wide angle X-ray scattering. An effective way was developed to study parent and daughter lamellae separately with in situ environment. iPP sample was preoriented to generate a bimodal orientation of lamellae for distinguishing the parent and daughter lamellae, which will orient in orthogonal directions under flow-induced crystallization. The dumbbell samples were prepared along different angles with respect to preorientation direction to achieve multisided stretching. The structural evolution of parent and daughter lamellae was followed by recording the scattering from (110) crystallographic plane. It was observed that the parent lamellae were destroyed earlier than daughter ones, no matter which the tensile direction was. Mesophase was observed at very small strain of 0.3, immediately after the damage of cross-hatched structure, which may be attributed to the destruction of parent lamellae. Deformation induced mesophase was proved to be the small crystal cluster which was transformed from parent and daughter lamellae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.