Abstract

Heart failure is an important cause of death of children. Especially, overt one within the preweaning period is fulminant and severe. However, there are no drugs with evidence for it. We recently found that angiotensin II (AngII) activates L-type Ca2+ channels through AT1 receptors (AT1R) and β-arrestin 2 in murine cardiac myocytes only in the preweaning period, indicating that AT1R/β-arrestin 2 pathway mediates positive inotropic effects before weaning. Indeed, β-arrestin-bias AT1R agonist (BBA), TRV027 caused significant long-lasting positive inotropic effects in preweaning mice without increasing serum aldosterone concentrations or inducing tachycardia, arrhythmias, increased cardiac oxygen consumption, and reactive oxygen species generation. TRV027 increased the peak amplitude of twitch Ca2+ transients not only in preweaning mouse cardiac myocytes but in human iPS cell-derived cardiac myocytes exhibiting the fetal to neonatal phenotype. Moreover, TRV027 also increased contraction of the compromised heart of the model knock-in mice mimicking human congenital dilated cardiomyopathy. Although ~80% of these mice died before weaning, TRV027 significantly increased their survival rate. TRV027 did not cause any obvious adverse effects on their preweaning wildtype littermates. Thus, we reason in this review that BBA can be important therapeutics for preweaning heart failure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call