Abstract

Distributed photovoltaic (PV) power stations are installed in high-elevation locations and various configurations. Traditional manual cleaning methods suffer from low cleaning quality, low efficiency, and high water consumption, making it difficult to achieve consistent cleaning. This paper proposes a novel water-free cleaning robot for dust removal from PV panels of distributed PV systems in water-scarce areas. A force analysis is conducted, and safe working conditions are considered to ensure the robot can safely clean PV panels installed at a large angle. The material, structure, and sealing device of the robot are optimized based on the carrying capacity of the PV system and the operating efficiency. A combined dust removal system consisting of a rolling brush and negative pressure is developed to prevent dust raising during cleaning. Experiments are carried out on a 2-kW distributed PV system on the roof of a university in Northeast China to verify the effectiveness of the negative pressure adsorption system and the obstacle crossing and cleaning abilities of the robot. The results show that the water-free cleaning robot can effectively remove dust from the panels. The average dust cleaning rate is 92.46%, and the increase rate of the PV efficiency ranges from 11.06% to 49.53%. In addition, the robot has a small volume and weight and is more suitable than manual or mechanical cleaning for dust removal from PV panels of distributed PV systems in water-scarce areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call