Abstract

The core elements of entomopathogenic nematode toxicity towards the fall armyworm Spodoptera frugiperda are associated with symbiotic bacteria. These microbes provide independent control effects and are reported to have repellency to insect pests. However, the ecological background of this nematode-bacteria-insect communication module is elusive. This work aims to identify key chemical cues which drive the trophic interactions through olfactory reception of S. frugiperda, and to inspire implementations with these isolated behavioral regulators in the corn field. A total of 657 volatiles were found within 13 symbiotic bacterial strains, and five of them induced significant electrophysiological responses of S. frugiperda larvae. 2-Hexynoic acid was demonstrated to exhibit a dominant role in deterring S. frugiperda larvae from feeding and localization. Field implementations with this novel volatile deterrent have resulted in fortified nematode applications. 2-Hexynoic acid acts as an excellent novel deterrent and presents remarkable application potential against fall armyworm larvae. Emissions from symbiotic bacteria of entomopathogenic nematodes are key players in chemical communication among insects, nematodes, and microbes. The olfactory perceptions and molecular targets for this volatile are worthy of future research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call