Abstract

This paper introduces a position controller for drone transmission line inspection (TLI) utilizing the integral sliding mode control (SMC) method. The controller, leveraging GNSS and visual deviation data, exhibits high accuracy and robust anti-interference capabilities. A deviation correction strategy is proposed to capture high-voltage transmission line information more robustly and accurately. Lateral position deviation is calculated using microwave radar data, attitude angle data, and deviation pixels derived from transmission line recognition via MobileNetV3. This approach enables accurate and stable tracking of transmission lines in diverse and complex environments. The proposed inspection scheme is validated in settings with 10-kilovolt and 110-kilovolt transmission lines using a drone with a diagonal wheelbase of 0.275 m. The experimental process is available in the YouTube link provided. The validation results affirm the effectiveness and feasibility of the proposed scheme. Notably, the absence of a high-precision positioning system in the validation platform highlights the scheme’s versatility, indicating applicability to various outdoor visual-based tracking scenarios using drones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call