Abstract

Abstract The production and transportation of heavy and extra-heavy crude oil are two of the paramount concerns in the oil industry due to the difficulties associated with heavy crude oil high viscosity. One of the most efficient techniques to improve the recovery and the transportability of such oil is to reduce its viscosity through dilution that can be applied solely or via thermal methods. In the present work, a new type of plant-based diluent is proposed, and its efficacy in heavy oil viscosity reduction for different concentrations, temperatures and shear rates is studied. Various concentrations of diluent, ranging from 5 to 25 wt%, are added to heavy-oil samples with different concentrations of asphaltene and viscosity, ranging from 48000 to 65000 cp in ambient temperature. A rotational viscometer was then employed to the measure viscosity of the prepared samples at the temperature range of 70 to 190°F and a shear rate of 3 to 50 s−1. The application of the proposed diluent led to promising results in that in caused the viscosity of the heavy oil samples to reduce by 93% in 75°F and 85% in 190°F with 20 wt% of diluent. To compare the performance of the proposed solvent and the common viscosity-reducing solvents, heavy oil samples were diluted with xylene and toluene with the same concentrations. Results indicated that the application of proposed diluent outperformed all of the commonly used solvents in terms of decreasing viscosity. The application of 20 wt% of the proposed diluent led to a 93% viscosity reduction of the heavy oil samples, which is 15% more than efficiency of adding the same concentration of toluene. The proposed diluent is a plant-based, non-hazardous substitute to the conventional hazardous diluents, e.g., xylene or toluene, that provides more efficient viscosity reduction compared to its conventional alternatives. Its flashpoint is higher than that of light crude resulting in less evaporation at high temperatures thus a longer period of reduced viscosity can be obtained. Furthermore, due to its high flashpoint, the proposed diluent can be employed in thermal methods more efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.