Abstract
This paper focuses on the research of virtual synchronous generator (VSG) control technology for the doubly-fed induction generator (DFIG)-based wind turbines. The key for DFIG VSG operation is to construct an internal electromotive force (EMF) with the virtual rotor motion characteristic in the stator. The existing control schemes use the rotor or mutual flux-induced EMF as the internal EMF. Since the flux corresponds to a composite magnetic field generated together by the stator and rotor current. Any variations in the stator current caused by external disturbances will reflect on the rotor current to keep the flux constant. The rotor overcurrent is inevitable under a large external disturbance, threatening the safety of the rotor-side converter (RSC). Moreover, the flux is immeasurable. The accurate flux control depends on flux observers, increasing the complexity; while the control without observers cannot ensure the effectiveness, leading to control failure. To address these problems, a novel DFIG VSG control scheme with the rotor current-induced EMF as the internal EMF is proposed in this paper. The internal EMF is corresponded to the single magnetic field generated only by the rotor current. This can lead to the following benefits: the rotor current will not vary with the stator current and can be limited under large external disturbances, ensuring the safety of the RSC; the rotor current can be directly measured without the need for extra observers, reducing the difficulty of control implementations; the underlying controlled vector is unified with the traditional grid-following DFIG, favoring the retrofit of the installed DFIGs. Compared to the existing schemes, this scheme has a larger equivalent internal impedance. An additional rotor current-terminal voltage magnitude droop control is added to effectively restrain the problems brought by this larger impedance. Simulation and analysis results demonstrate that the proposed DFIG VSG control scheme effectively addresses problems in the existing schemes. Moreover, the results also exhibit that the scheme has a robust adaptability across a wide range of short-circuit ratios and possesses the grid-forming ability independent of SGs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical Power & Energy Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.