Abstract
The method presented in this work is a 3-dimensional polyhedral finite element (3D PFEM) based on virtual node method. Novel virtual node polyhedral elements (termed as VPHE) are developed here, particularly virtual node hexahedral element (termed as VHE). Stiffness matrices of these polyhedral elements consist of simple polynomials. Thus, a new algorithm is introduced in this paper, which enables exact integration of monomials without a need for high number of integration points and weights. The number of nodes for VHE elements is not restricted, as opposed to the conventional hexahedral elements. This feature enables formulation of transition elements (termed as T-VHE) which are useful to adaptive computation. Performances of the new VHE elements in solid mechanics and conductive heat transfer phenomena are examined through numerical simulations. The new T-VHE elements are utilized in octree mesh. The VHE elements are found to produce good results and T-VHE elements help to reduce number of global nodes for the analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.