Abstract

The development of a versatile microbiosensor for hydrogen detection is reported. Carbon-based microelectrodes were modified with a [NiFe]-hydrogenase embedded in a viologen-modified redox hydrogel for the fabrication of a sensitive hydrogen biosensor By integrating the microbiosensor in a scanning photoelectrochemical microscope, it was capable of serving simultaneously as local light source to initiate photo(bio)electrochemical reactions while acting as sensitive biosensor for the detection of hydrogen. A hydrogen evolution biocatalyst based on photosystem 1-platinum nanoparticle biocomplexes embedded into a specifically designed redox polymer was used as a model for proving the capability of the developed hydrogen biosensor for the detection of hydrogen upon localized illumination. The versatility and sensitivity of the proposed microbiosensor as probe tip allows simplification of the set-up used for the evaluation of complex electrochemical processes and the rapid investigation of local photoelectrocatalytic activity of biocatalysts towards light-induced hydrogen evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call