Abstract
Recursive least square (RLS) algorithms are considered as a kind of accurate parameter identification method for lithium-ion batteries. However, traditional RLS algorithms usually employ a fixed forgetting factor, which does not have adequate robustness when the algorithm has interfered. In order to solve this problem, a novel variable forgetting factor method is put forward in this paper. Comparing with traditional variable forgetting factor methods, it has higher stability and sensitivity by using some mathematic improvements. The improvements in the robustness of recursive least square with a variable forgetting factor (VFF-RLS) algorithm is verified in this paper. A Thevenin model which is frequently-used in battery management system is employed in the verification. A data loss battery working condition is designed to simulate the interference to the algorithm. A simulation platform is established in MATLAB/Simulink software, and the data used in the verification is obtained by battery experiments. The analysis indicated that the novel VFF-RLS algorithm has better robustness and convergence ability, and has an acceptable identification accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.