Abstract

In this work, a novel aqueous electrolyte system consisting of cobalt and vanadium for redox flow battery was prepared to increase the cell voltage of the system for the first time in the literature. Electrolyte systems were characterized by using of cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy to determine the effects of sulfuric acid and active ion concentration on the performance of the battery. Optimum sulfuric acid concentration was determined as 4.0 M for anolyte and catholyte. The effect of diffusion on mass transfer mechanism was higher than that of adsorption in each electrolyte of the flow battery system. Cyclic charge-discharge tests were carried out for the prepared novel electrolyte system. Discharge capacities of the electrolyte were determined as 430.1, 417.4, and 428.7 mAh for first cycle, second cycle, and third cycle, respectively. The cell potential of the redox flow battery in the electrolyte system during the charging process increased to 2.35 V which was also relatively higher than those of aqueous vanadium redox flow battery and aqueous iron flow battery. Obtained redox flow battery composition with its high cell potential can bring a new approach for the different application areas in the electrochemical energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.