Abstract

Hemojuvelin is a critical regulator of hepcidin expression and can be cleaved by proteases to form soluble hemojuvelin. Soluble hemojuvelin has been recently identified in human serum but the presence and quantity of soluble hemojuvelin in mouse serum is unknown. We developed a two-site enzyme-linked immunosorbent assay using a monoclonal anti-hemojuvelin as the capture antibody and a biotinylated polyclonal anti-hemojuvelin as the detection antibody to quantify the levels of soluble hemojuvelin in mouse serum. We validated this assay using cell-conditioned media and serum from Hemojuvelin-null and Bone morphogenetic protein 6-null mice. We also used this validated assay to measure serum soluble hemojuvelin concentrations in mice receiving an acute low iron or high iron treatment. This two-site enzyme-linked immunosorbent assay was highly specific for mouse hemojuvelin, with a lower limit of detection at 13.2-26.8 ng/mL of soluble hemojuvelin in mouse serum. The median serum soluble hemojuvelin concentration in wild-type C57BL/6J mice was 57.9 ± 22 ng/mL, which is 4- to 20-fold less than that reported in healthy human volunteers. After acute low iron diet treatment in these mice, serum soluble hemojuvelin levels were increased and correlated with lowered serum iron levels and decreased hepatic hepcidin expression. An acute high iron diet in wild-type mice or chronically iron-overloaded Bone morphogenetic protein 6-null mice did not significantly lower serum soluble hemojuvelin concentrations. Here we report reliable quantitation of mouse serum soluble hemojuvelin using a novel and validated enzyme-linked immunosorbent assay. This assay may provide a useful tool to elucidate the source and physiological role of serum soluble hemojuvelin in hepcidin regulation and iron metabolism using well-established mouse models of iron-related disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.