Abstract

AbstractThe efficacy of a metal‐silsesquioxane, namely, heptaisobutyl (isopropoxyde)titanium‐polyhedral oligomeric silsesquioxanes (Ti‐POSS), as initiator of the ring‐opening polymerization of L‐lactide (LLA) has been assessed. Indeed, as demonstrated by proton nuclear magnetic resonance (1H NMR) spectroscopy and gel permeation chromatography (GPC) measurements, a well‐controlled polymerization occurs via a coordination‐insertion mechanism. Moreover, the above reaction leads to the direct insertion of the silsesquioxane molecule into the polymer backbone, thus producing a hybrid system. Differential scanning calorimetry measurements demonstrated that in comparison with a commercial poly‐L‐lactide (PLLA), the polymers prepared with Ti‐POSS exhibit a higher crystallinity. Indeed, the presence of silsesquioxane molecules, attached to one end of the polymer chains, has been found to appreciably affect the crystal nucleation density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.