Abstract

Neurotoxic lesions of the nigrostriatal pathway model the deficits found in Parkinson's disease. This study used stereology and a novel staining method to examine the effects of a partial unilateral striatal 6-hydroxydopamine (6-OHDA) lesion on substantia nigra pars compacta (SNpc) dopamine neuron number and morphology in rats. Adult male Long-Evans rats were subjected to unilateral lesion of the SNpc by intrastriatal microinjection of 6-OHDA (12.5μg). Lesions were verified by d-amphetamine-stimulated rotation (2.5mg/kg, sc) by force-plate rotometry 7 days post-surgery. Seven days after rotation testing, rats were euthanized, and brains were prepared for either histology (n=12) or determination of striatal dopamine content by HPLC-EC (n=20). Brains prepared for histology were stained for tyrosine hydroxylase (TH) combined with a silver nucleolar (AgNOR) stain using a modified protocol developed for stereological assessment. The AgNOR counterstain allowed for precise definition of the nucleolus of the cells, facilitating both counting and qualitative morphometry of TH-positive neurons. Stereological quantitation determined a 54% decrease in TH-positive neuron number (P<0.01), and a 14% decrease in neuron volume (P<0.05) on the lesioned side. Striatal dopamine concentration was decreased by 92% (P<0.01), suggesting that striatal dopamine analysis may overestimate the numbers of SNpc neurons lost. These findings demonstrate that combined use of TH and AgNOR staining provides improved characterization of 6-OHDA-induced pathology. Furthermore, the data suggest that decreased neuronal volume as well as number contributes to the functional deficits observed after unilateral intrastriatal 6-OHDA lesion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call