Abstract

This paper proposes a novel unipolar transceiver for visible light communication (VLC) by using orthogonal waveforms. The main advantage of our proposed scheme over most of the existing unipolar schemes in the literature is that the polarity of the real-valued orthogonal frequency division multiplexing (OFDM) sample determines the pulse shape of the continuous-time signal and thus, the unipolar conversion is performed directly in the analog instead of the digital domain. Therefore, our proposed scheme does not require any direct current (DC) biasing or clipping as it is the case with existing schemes in the literature. The bit error rate (BER) performance of our proposed scheme is analytically derived and its accuracy is verified by using Matlab simulations. Simulation results also substantiate the potential performance gains of our proposed scheme against the state-of-the-art OFDM-based systems in VLC; it indicates that the absence of DC shift and clipping in our scheme supports more reliable communication and outperforms the asymmetrically clipped optical-OFDM (ACO-OFDM), DC optical-OFDM (DCO-OFDM) and unipolar-OFDM (U-OFDM) schemes. For instance, our scheme outperforms ACO-OFDM by at least 3 dB (in terms of signal to noise ratio) at a target BER of 10−4, when considering the same spectral efficiency for both schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.