Abstract

The accurate prediction of human pharmacokinetics is critically important in modern drug discovery since it drives both pharmacological and toxicological effects. Although significant progress has been made in predicting drug disposition by hepatic drug-metabolizing enzymes, predicting transporter-mediated clearance is still highly uncertain. Furthermore, different approaches are often used to predict clearance with and without transporter involvement, hence the major clearance pathway for a compound must first be determined to know which approach to use. As a result of these challenges, a novel unified method has been developed using cryopreserved suspended human hepatocytes to predict human hepatic clearance for both enzyme- and transporter-mediated mechanisms. This method hypothesizes that, once in vitro metabolic stability is scaled by partition coefficients between hepatocytes and buffer with 4% bovine serum albumin, in vivo clearance can be better predicted. With this method, good in vitro-in vivo correlation of human hepatic clearance has been obtained for a set of 32 structurally diverse compounds, including such transporters as organic anion-transporting polypeptide substrates. The clearance predictions for most compounds are within 3-fold of observed values. This is the first time that multiple compounds result in good in vitro-in vivo extrapolation using an entirely "bottom-up" approach without any empirical scaling factor when transporter-mediated clearance is involved. Potential exceptions are compounds with significant biliary and/or extra-hepatic clearance. The method offers an alternative approach to more accurately predict human hepatic clearance when multiple complex mechanisms are involved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.