Abstract
In this letter, a novel unequal power divider (PD) with three standard 50- <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\Omega $ </tex-math></inline-formula> ports is presented. It consists of two transmission line (TL) sections, two resistors, and a general isolation topology (GIT). Through analyzing voltages and currents of each branch, the constraint conditions of such a GIT are newly established. Considering realization of GIT, two types of topologies, i.e., asymmetrical coupled line and cascaded TL, are selected for verification. From the design charts and several design examples, the proposed PD could not only provide high power ratio <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k^{2}$ </tex-math></inline-formula> with compact size but also independently adjust their fractional bandwidths ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S_{11}$ </tex-math></inline-formula> or <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$S_{32}$ </tex-math></inline-formula> ) with the same power ratio <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k^{2}$ </tex-math></inline-formula> . Finally, an unequal PD with the power ratio <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$k^{2} =8$ </tex-math></inline-formula> is fabricated, and the measured results meet the simulated results very well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.