Abstract
AbstractNanoflower‐like composites have greater contact area and more redox reactive centers, which have great potential in the application of electrode materials for supercapacitors. A nonconductive polymer binder is usually used in preparation of electrodes, which causes an increase in interface resistance and a decrease in material active sites. Here, polyaniline (PANI) and ZIF‐9 are directly grown on the Ni foam (ZIF‐9@PANI/NF) by a simple solvothermal method without a nonconductive polymer binder. A nanoflower array is grown on the NF, which can be directly used as electrode material of supercapacitor. The attachment of PANI facilitates electron transfer and increases the conductivity of the material. At a current density of 1 A g−1, the specific capacitance is up to 7 times that of the ZIF‐9. The assembled asymmetric supercapacitor has a high energy density of 52 Wh kg−1 at a power density of 800 W kg−1, remaining 90.1% after 50 000 cycles. These great electrochemical properties show the material has good market development prospects for energy storage device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.