Abstract

An ultracapacitor State-of-Charge (SOC) fusion estimation method for electric vehicles under variable temperature environment is proposed in this paper. Firstly, Thevenin model is selected as the ultracapacitor model. Then, genetic algorithm (GA) is adopted to identify the ultracapacitor model parameters at different temperatures (−10 °C, 10 °C, 25 °C and 40 °C). Secondly, a variable temperature model is established by using polynomial fitting the temperatures and parameters, which is applied to promote the ultracapacitor model applicability. Next, the off-line experimental data is iterated by adaptive extended Kalman filter (AEKF) to train the Nonlinear Auto-Regressive Model with Exogenous Inputs (NARX) neural network. Thirdly, the output of the NARX is employed to compensate the AEKF estimation and thereby realize the ultracapacitor SOC fusion estimation. Finally, the variable temperature model and robustness of the proposed SOC fusion estimation method are verified by experiments. The analysis results show that the root mean square error (RMSE) of the variable temperature model is reduced by 90.187% compared with the non-variable temperature model. In addition, the SOC estimation error of the proposed NARX-AEKF fusion estimation method based on the variable temperature model remains within 2.055%. Even when the SOC initial error is 0.150, the NARX-AEKF fusion estimation method can quickly converge to the reference value within 5.000 s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.