Abstract

In this brief we present a novel, ultra-compact, True Random Number Generator (TRNG) architecture and its FPGA implementation. The proposed Latched Ring Oscillator (LRO) TRNG allows the generation of a TRNG bit from a single FPGA Slice. Despite its very compact structure, the proposed LRO-TRNG relies on both meta-stability and accumulated jitter as entropy sources, and exhibits very good results in terms of unpredictability and randomness. The proposed architecture has been implemented on Xilinx Spartan-6 devices and the TRNG performances have been extensively validated under supply voltage and temperature variations. Measurements results have shown that the LRO-TRNG exhibits an estimated entropy of about 7.99834 per bit (according to T8 test of the AIS-31) and a throughput of 0.76 Mbits/s with a 50MHz clock. A comparison against the state of the art shows that the proposed LRO-TRNG outperforms most of the previously published TRNGs, in terms of the ratio between throughput and FPGA resources usage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.