Abstract

LC-MS/MS analyses have been reported as challenging for the reliable separation and quantification of cyanogenic glycosides (CNGs), especially (R)-prunasin and sambunigrin isomers found in American elderberry (Sambucus nigra L. subsp. canadensis (L.) Bolli). Hence, a novel multiple reaction monitoring (MRM)-based ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated in the present study for simultaneous separation and quantification of five CNGs, including amygdalin, dhurrin, linamarin, (R)-prunasin, and (S)-prunasin (commonly referred to as sambunigrin). Initially, the role of ammonium formate was investigated as an aqueous mobile-phase additive in developing MRM-based UHPLC-MS/MS. Later, chromatographic conditions for the resolved separation of (R)-prunasin and sambunigrin were identified. Validation studies confirmed that the developed method has good linearity and acceptable precision and accuracy. A noticeable matrix effect (mainly signal enhancement) was observed in leaf samples only. This method was used to detect and quantify CNGs, including (R)-prunasin and sambunigrin, in leaf and fruit samples of American elderberry. Among the studied CNGs, only (R)-prunasin was detected in the leaf samples. Interestingly, (S)-prunasin (sambunigrin) was not detected in the samples analyzed, even though it has been previously reported in elderberry species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call