Abstract

The delivery of nucleic acids, particularly of small RNA molecules like siRNAs for the induction of RNA interference (RNAi), still represents a major hurdle with regard to their application in vivo. Possible therapeutic applications thus rely on the development of efficient non-viral gene delivery vectors. While low molecular weight polyethylenimines (PEIs) have been successfully explored, the introduction of chemical modifications offers an avenue towards the development of more efficient vectors.In this paper, we describe the synthesis of a novel tyrosine-modified low-molecular weight polyethylenimine (P10Y) for efficient siRNA complexation and delivery. The comparison with the respective parent PEI reveals that knockdown efficacies are considerably enhanced by the tyrosine modification, as determined in different reporter cell lines, without appreciable cytotoxicity. We furthermore identify optimal conditions for complex preparation as well as for storing or lyophilization of the complexes without loss of biological activity. Beyond reporter cell lines, P10Y/siRNA complexes mediate the efficient knockdown of endogenous target genes and, upon knockdown of the anti-apoptotic oncogene survivin, tumor cell inhibitory effects in different carcinoma cell lines. Pushing the system further towards its therapeutic in vivo application, we demonstrate in mice the delivery of intact siRNAs and distinct biodistribution profiles upon systemic (intravenous or intraperitoneal) injection. No adverse effects (hepatotoxicity, immunostimulation/alterations in immunophenotype, weight loss) are observed. More importantly, profound tumor-inhibitory effects in a melanoma xenograft mouse model are observed upon systemic application of P10Y/siRNA complexes for survivin knockdown, indicating the therapeutic efficacy of P10Y/siRNA complexes.Taken together, we (i) establish tyrosine-modified PEI (P10Y) as efficient platform for siRNA delivery in vitro and in vivo, (ii) identify optimal preparation and storage conditions as well as (iii) physicochemical and biological properties of P10Y complexes, and (iv) demonstrate their applicability as siRNA therapeutic in vivo (v) in the absence of adverse effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.