Abstract

The fuzzy C -means (FCM) clustering procedure is an unsupervised form of grouping the homogenous pixels of an image in the feature space into clusters. A brain magnetic resonance (MR) image is affected by noise and intensity inhomogeneity (IIH) during the acquisition process. FCM has been used in MR brain tissue segmentation. However, it does not consider the neighboring pixels for computing the membership values, thereby misclassifying the noisy pixels. The inaccurate cluster centers obtained in FCM do not address the problem of IIH. A fixed value of the fuzzifier ( m ) used in FCM brings uncertainty in controlling the fuzziness of the extracted clusters. To resolve these issues, we suggest a novel type-2 adaptive weighted spatial FCM (AWSFCM) clustering algorithm for MR brain tissue segmentation. The idea of type-2 FCM applied to the problem on hand is new and is reported in this article. The application of the proposed technique to the problem of MR brain tissue segmentation replaces the fixed fuzzifier value with a fuzzy linguistic fuzzifier value ( M ). The introduction of the spatial information in the membership function reduces the misclassification of noisy pixels. Furthermore, the incorporation of adaptive weights into the cluster center update function improves the accuracy of the final cluster centers, thereby reducing the effect of IIH. The suggested algorithm is evaluated using T1-w, T2-w, and proton density (PD) brain MR image slices. The performance is justified in terms of qualitative and quantitative measures followed by statistical analysis. The outcomes demonstrate the superiority and robustness of the algorithm in comparison to the state-of-the-art methods. This article is useful for the cybernetics application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call