Abstract

In this paper, a new two-stage approach has been presented for the reactive power control of power systems. In the first stage, the transmission network is divided into several parts using a partitioning approach based on graph concept. In the second stage, a hierarchical distributed framework based on a System of Systems (SoS) concept has been proposed for optimal reactive power dispatch. In this structure, every section of the grid is controlled by a smart agent. Agents are interconnected and exchange the required data via a telecommunication network. In this paper, the amounts of active and reactive power exchanged between agents are considered as boundary and common parameters. Our proposed method is implemented on the IEEE 118-bus network connected to 7 active power distribution networks. The results are compared to the ones obtained from a distributed method based on an Incident Command System (ICS) and a centralized control method. It turns out that the proposed method outperforms the other two competing methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call