Abstract

The synthesis of two-dimensional (2D) C60 fullerene network (Nature (2022), 606, 507) with an anisotropic lattice is among the most exciting advances in the field of carbon-based materials, which has the potential to expand and establish a new class of 2D materials. In this work, a novel C36 fullerene 2D network with an isotropic structure is designed by screening of extensive and diverse fullerene lattices. Density functional theory calculations confirm that the herein predicted C36 fullerene network can exhibit an outstanding thermal stability up to 1500 K, an elastic modulus of 266 GPa, a negative Poisson's ratio of −0.05, and an indirect semiconducting electronic nature, with a HSE06(PBE) bad gap of 1.63 (0.97) eV. The phonon dispersion relation, mechanical and failure responses, and lattice thermal conductivity are explored with the aid of machine learning interatomic potentials (MLIPs). MLIP-based calculations close to the ground state confirm the dynamical stability, a negative Poisson's ratio of −0.06, an elastic modulus of 269 GPa, and a high tensile strength of around 26.8 GPa for the predicted 2D network. Room temperature phononic thermal conductivity and tensile strength are also predicted to be 9.8 ± 1 W/m.K and 15.9 GPa, respectively. This study introduces a novel isotropic and auxetic semiconducting full-carbon nanoporous nanosheet, with low thermal conductivity and appealing electronic, optical, and mechanical features, highlighting a bright prospect for the design and synthesis of novel fullerene-based 2D networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.