Abstract

Twin support vector machine (TWSVM), as a variant of the generalized eigenvalue proximal support vector machine (GEPSVM), attempts to improve the generalization of GEPSVM, whose solution follows from solving two quadratic programming problems (QPPs), each of which is smaller than in a standard SVM. Unfortunately, TWSVM fails to fully consider the local geometry structure and the local underlying descriminant information inside the samples that may be important for classification performance and only preserves the global data structure. In this paper, a novel TWSVM with manifold regularization is proposed by introducing the basic idea of the locality preserving within-class scatter matrix (LPWSM) into TWSVM. We termed this method manifold TWSVM (MTWSVM). MTWSVM not only retains the superior characteristics of TWSVM, but also preserves the local geometry structure between samples and shows the local underlying discriminant information. Experimental results confirm the effectiveness of our method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.