Abstract

The multimode ablation of liver cancer, which uses radio-frequency heating after a pre-freezing process to treat the tumor, has shown significantly improved therapeutic effects and enhanced anti-tumor immune response. Unlike open surgery, the ablated lesions remain in the body after treatment, so it is critical to assess the immediate outcome and to monitor disease status over time. Here we propose a novel tumor progression prediction method for simultaneous postoperative evaluation and prognosis analysis. We propose to leverage the intraoperative therapeutic information extracted from thermal dose distribution. For tumors with specific sensitivity reflected in medical images, different thermal doses implicitly indicate the degree of instant damage and long-term inhibition excited under specific ablation energy. We further propose a survival analysis framework for the multimode ablation treatment. It extracts carefully designed features from clinical, preoperative, intraoperative, and postoperative data, then uses random survival forest for feature selection and deep neural networks for survival prediction. We evaluated the proposed methods using clinical data. The results show that our method outperforms the state-of-the-art survival analysis methods with a C-index of 0.855±0.090. The thermal dose information contributes significantly to the prediction accuracy by taking up 21.7% of the overall feature importance. The proposed methods have been demonstrated to be a powerful tool in tumor progression prediction of multimode ablation therapy. This kind of data-driven prognosis analysis may benefit personalized medicine and simplify the follow-up process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.