Abstract

The increased maternal estradiol (E2) concentrations induced by assisted reproductive technology (ART) result in lower birth weight of offspring, which is associated with increased risk of adult diseases. However, the exact mechanism remains unknown. The present study investigated the effect of high E2 exposure on the expression of imprinted genes CDKN1C and IGF2 in human placentas and the DNA methylation status of their differential methylation regions (DMRs).The mRNA expression of CDKN1C and IGF2 in human placentas and the human trophoblast cells (HTR8) treated with E2 were investigated by reverse transcription-real time polymerase chain reaction (PCR). The DNA methylation of their DMRs were investigated by sodium bisulfite sequencing.CDKN1C and IGF2 were significantly up-regulated in ART conceived placentas. The mean birth weight of ART singletons was significantly lower than that of naturally conceived (NC) ones, with the increased percentage of small-for-gestational-age (SGA) birth. The DNA methylation was significantly down-regulated in the DMR of CDKN1C (KvDMR1) and up-regulated in the DMR of IGF2 (H19 DMR) in ART placentas. The treatment of E2 altered the expression of the two genes and the DNA methylation of their DMRs in HTR8 to a similar tendency as in vivo.The maternal high E2 levels after ART up-regulate the expression of imprinted genes in human placentas through epigenetic modifications, which influences the growth potential of the offspring. Further studies are needed to follow up the growth and development of the ART offspring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.