Abstract

A novel trust measurement method, namely, certified belief in strength (CBS), for a multi-agent classifier system (MACS) is proposed in this paper. The CBS method aims to improve the performance of the constituent agents of the MACS, viz., the fuzzy min–max (FMM) neural network classifier. Trust measurement is accomplished using reputation and strength of the constituent agents. Trust is built from strong elements that are associated with the FMM agents, allowing the CBS method to improve the performance of the MACS. An auction procedure based on the sealed bid, namely, the first price method, is adopted for the MACS in determining the winning agent. The effectiveness of the CBS method and the bond (based on trust) is verified by using a number of benchmark data sets. The results demonstrate that the proposed MACS-CBS model is able to produce better accuracy and stability as compared with those from other existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.