Abstract

Activation of the cGAS-STING pathway plays a key role in the innate immune response to cancer through Type-1 Interferon (IFN) production and T cell priming. Accumulation of cytosolic double-stranded DNA (dsDNA) within tumor cells and dying cells is recognized by the DNA sensor cyclic GMP-AMP synthase (cGAS) to create the secondary messenger cGAMP, which in turn activates STING (STimulator of INterferon Genes), resulting in the subsequent expression of IFN-related genes. This process is regulated by Three-prime Repair EXonuclease 1 (TREX1), a 3' → 5' exonuclease that degrades cytosolic dsDNA, thereby dampening activation of the cGAS-STING pathway, which in turn diminishes immunostimulatory IFN secretion. Here, we characterize the activity of VB-85680, a potent small-molecule inhibitor of TREX1. We first demonstrate that VB-85680 inhibits TREX1 exonuclease activity in vitro in lysates from both human and mouse cell lines. We then show that treatment of intact cells with VB-85680 results in activation of downstream STING signaling, and activation of IFN-stimulated genes (ISGs). THP1-Dual™ cells cultured under low-serum conditions exhibited an enhanced ISG response when treated with VB-85680 in combination with exogenous DNA. Collectively, these findings suggest the potential of a TREX1 exonuclease inhibitor to work in combination with agents that generate cytosolic DNA to enhance the acquisition of the anti-tumor immunity widely associated with STING pathway activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.