Abstract

To fulfill high-reliability requirements for aerospace applications, a novel traveling wave rotary ultrasonic motor with a piezoelectric backup function (Backup motor) is proposed in this paper. The backup function is enabled by the addition of a set of piezoelectric ceramics (PZT). Based on the ultrasonic motor of the CSX-60, a cantilever-tooth backup motor (CTBM) is designed and fabricated. This backup motor can operate in three working modes according to the excitation settings of PZTs, namely normal mode, backup mode, and enhanced mode. The relationships between three working modes’ performances are analyzed by finite element (FE) analysis and prototype tests. The results show that backup mode, as the substitution, can nearly reach normal mode’s performance, while enhanced mode is obviously higher than others. Furthermore, a modified backup motor with straight-tooth (STBM) and different sizes of PZT is designed and tested as a supplement to verify the feasibility of the proposal. In addition, the effect of stress reduction on PZT damage is verified by extreme working experiments. The comparison between the two types of motors indicates that STBM can provide better frictional drive performance. This proposal can provide a new reference for the subsequent reliability study of ultrasonic motors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.