Abstract

The mammalian cerebellum is composed of a highly reproducible array of transverse zones, each of which is subdivided into parasagittal stripes. By using a combination of Purkinje cell antigenic markers and afferent tracing, four transverse zones have been identified: the anterior zone (AZ: ∼lobules I–V), the central zone (CZ: ∼lobules VI–VII), the posterior zone (PZ: ∼lobules VIII-dorsal IX) and the nodular zone (NZ: ∼ventral lobule IX+lobule X). Neurofilament-associated antigen (NAA) is an epitope recognized by a monoclonal antibody, which is expressed strongly in association with neurofilaments. During perinatal cerebellar development, anti-NAA immunocytochemistry reveals novel features of cerebellar organization. In particular, the CZ is reproducibly subdivided into anterior and posterior components. Between embryonic day 17 and postnatal day 7 NAA immunoreactivity is expressed selectively by a parallel fiber bundle that is restricted to lobule VII, thereby distinguishing the CZ anterior (lobules VIa, b) from the CZ posterior (lobule VII). The novel restriction boundary at lobule VII/VIII, which is also reflected in the morphology of the external granular layer and aligns with a gap in the developing Purkinje cell layer, precedes the morphological appearance of the posterior superior fissure between lobules VIb and VII. In addition, afferent axons to the CZ terminate in an array of parasagittal stripes that is probably a specific climbing fiber projection. Thus, the transverse zone architecture of the mouse cerebellum is more complex than had previously been appreciated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call