Abstract

Hybrid porous tilting pad bearings with the advantages of gas porous bearings and tilting pad bearings exhibited excellent rotor-supporting performance with high accuracy and stability. Under hybrid lubrication, the transient adaptive motion of the tilting pads was important for the rotordynamic characteristics. A novel fluid–structure interaction model of hybrid porous tilting pad bearings was developed to investigate the transient hydro forces and the pad's adaptive motion. The rotordynamic coefficients of the hybrid porous tilting pad bearings were identified using the rotor harmonic trajectory. The computational fluid dynamics-fluid–structure interaction model was validated with the experimental data. The effects of eccentricity ratios, rotor speeds, supply pressures, pivot radial stiffnesses, and dampings on the pad adaptive motion and the rotordynamic coefficients were evaluated. The pad self-adaption motions significantly influenced the supporting and vibration-absorbing characteristics of hybrid porous tilting pad bearings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.