Abstract

The existed methods for electroencephalograph (EEG) emotion recognition always train the models based on all the EEG samples indistinguishably. However, some of the source (training) samples may lead to a negative influence because they are significant dissimilar with the target (test) samples. So it is necessary to give more attention to the EEG samples with strong transferability rather than forcefully training a classification model by all the samples. Furthermore, for an EEG sample, from the aspect of neuroscience, not all the brain regions of an EEG sample contain emotional information that can transferred to the test data effectively. Even some brain region data will make strong negative effect for learning the emotional classification model. Considering these two issues, in this paper, we propose a transferable attention neural network (TANN) for EEG emotion recognition, which learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively through local and global attention mechanism. This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator. Extensive experiments on EEG emotion recognition demonstrate that the proposed TANN is superior to those state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.