Abstract

Cellulose aliphatic esters (CEs) are important cellulose derivatives that have been widely used in many fields such as plastics, textiles, membranes, etc. However, in traditional methods, long pretreatment and reaction times limit the manufacture of CEs and their widespread application. Herein, a very efficient method for the preparation of CEs in a heterogeneous system was developed. This method involved the transesterification of cellulose with vinyl esters (from C4 to C14) in dimethylsulfoxide under the catalysis of aqueous NaOH. For better understanding of this new reaction system, factors such as the water content, amount of catalyst, reaction temperature and molar ratio of vinyl acetate to the anhydroglucose unit were explored. Results obtained from FT-IR, 1H and 13C NMR spectroscopies confirmed that CEs could be synthesized at 100 °C within 5 min. High water content or excessive amounts of NaOH were detrimental to the synthesis of CEs. Results from small-angle X-ray diffraction showed that the interplanar spacings of these CEs showed an increasing trend with the length of the aliphatic chain. Thermogravimetric analysis and derivative thermogravimetric analysis showed that CEs had higher thermal stability than cellulose. This work provides a new and highly efficient method to synthesize various CEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.