Abstract

Objective: Patient safety and low complication rates are indispensable in surgical training and models are among the main educational tools. The aim of this study is to assess the efficiency of a novel model for orthognathic mandibular osteotomy. Material and Methods: A template and seventeen partial mandibular models (MM-17) were manufactured with air dried clay. The dimensions of the models were feasible for sagittal split ramus osteotomy (SSRO). Model surgery was performed by surgeons with a minimum of three years’ experience in orthognathic surgery. Each surgeon operated four separate models and the following data were recorded: corticotomy and SSRO completion time, MM-17 fracture type, similarity value of MM-17 with native mandible, representation value of MM-17, and the training compatibility value of MM-17. Results: The cost was 0.6 American Dollars. The mean corticotomy time was 126.75 seconds (110-150). Mean cortical resistance similarity value was 8.75 (8-10). The mean SSRO time was 288 seconds (205-401). Sixty percent of the fractures were seen in the outer cortex. The mean medullary resistance similarity value was 5 (4-6) and mean mandibular representation value was 5.25 (4-7). The training compatibility value was 8.25 (7-10).  Conclusion: Air dried clay demonstrated mechanical similarities with bone cortex and it was used for mandibular modelling for the first time. MM-17 cost less than other devices. Corticotomy and SSRO completion times were short due to the lack of dissection and bleeding. Despite its drawbacks in SSRO, MM-17 is a versatile and low cost alternative in orthognathic mandibular corticotomy training. High power drill utilization skills may be gained with MM-17 before clinical practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.