Abstract

Toxin-antitoxin (TA) systems are found widely among many bacteria, including enterohemorrhagic Escherichia coli (EHEC), but their functions are still poorly understood. In this study, we identified and characterized a novel TA system belonging to the relBE family, classified as a type II TA system, found in EHEC. The protein encoded by the toxin gene is homologous to RelE ribonuclease. Using various conditions for increasing the toxin activity, high-level induction of a toxin gene, and repression of an antitoxin gene in wild-type EHEC, we showed that the TA system, named swpAB (switching of gene expression profile), is involved in selective repression of a set of genes, including some virulence genes, and in the reduction of adherence capacity, rather than in suppression of bacterial growth. A detailed analysis of the profiles of RNA levels along sequences at 15 min after high expression of swpA revealed that two virulence genes, espA and tir, were direct targets of the SwpA toxin. These results suggested that the swpAB system can alter gene expression patterns and change bacterial physiological activity without affecting bacterial growth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.