Abstract

In this paper, energy management strategy (EMS) model based on deep recurrent neural network (DRNN) is presented to learn optimal torque distribution for the single-axle parallel hybrid electric vehicle. The model has two distinguishing properties: 1) because the EMS is formulated as a time series prediction problem, taking historical data as input of the EMS model captures the input-and-output dynamic characteristics and enhances the prediction capability and 2) the EMS model based on end-to-end framework directly generates torque distribution results without extracting features of driving cycles and other artificial interference. The extensive simulations are conducted to demonstrate the accuracy and generalization capability of the EMS model in public platform TensorFlow. Comparing with other energy management strategies, our proposed model yields better performance in terms of fuel economy and accuracy. The simulation results show that our proposed EMS model provides a novel way to study the energy management strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.