Abstract

Incubation of oxindole derivatives containing an arylpiperazine pharmacophore in rat liver microsomes in vitro formed several metabolites hydroxylated at various positions of the aromatic rings of the oxindole carbocycle or the arylpiperazine moiety. In order to substitute the sites of metabolic attack on these positional isomers, the exact structure of the molecules had to be identified. As polarities of the compounds depend on the site of hydroxylation, we measured retention times of the metabolites using reversed-phase HPLC. It was noted that the relative retention times (RRT, the ratio of the retention time of the metabolite and the parent compound) fell into distinct narrow ranges for metabolites identified by MS spectra as positional isomers. These RRT ranges correlated with the positions of hydroxylation. The hypothesis was validated by synthesis of hydroxy compounds of known structure and by determination of their RRT values. Change in the chromatographic parameters such as column type, eluent, gradient time and temperature did not impede the identification of the sites of hydroxylation as the RRT pattern remained similar to the original one. The new empirical method proposed in our study can be used for tentative identification of hydroxy metabolites and orient the direction of efforts to synthesize metabolically stable compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.