Abstract
This research aims at establishing a novel hybrid artificial intelligence (AI) approach, named as firefly-tuned least squares support vector regression for time series prediction(FLSVRTSP). The proposed model utilizes the least squares support vector regression (LS-SVR) as a supervised learning technique to generalize the mapping function between input and output of time series data. In order to optimize the LS-SVR’s tuning parameters, theFLSVRTSPincorporates the firefly algorithm (FA) as the search engine. Consequently, the newly construction model can learn from historical data and carry out prediction autonomously without any prior knowledge in parameter setting. Experimental results and comparison have demonstrated that theFLSVRTSPhas achieved a significant improvement in forecasting accuracy when predicting both artificial and real-world time series data. Hence, the proposed hybrid approach is a promising alternative for assisting decision-makers to better cope with time series prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Computational Intelligence and Soft Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.