Abstract

The wet-chemical synthetic approach for Li-argyrodite superionic conductors for all-solid-state batteries (ASSBs) is promising as it saves time, energy, and cost, while achieving scalable production. However, it faces certain commercialization issues such as byproduct generation, nucleophilic attack of the solvent, and long processing times. In this study, a facile and time-saving microwave-assisted wet synthesis (MW-process) approach is proposed for Li6 PS5 Cl (LPSC), which is completed in 3h at the precursor-synthesis stage. The LPSC crystal obtained from the MW-process presents various advantages such as fast-PS4 3- generation, high solubility of LiCl, and low adverse effects from solvent molecules. These features help in achieving a high Li-ion conductivity (2.79 mS cm-1 ) and low electric conductivity (1.85×10-6 mS cm-1 ). Furthermore, the LPSC crystal is stable when reacting with Li metal (2000h at 0.1mA cm-2 ) and exhibits superior cyclability with LiNi0.6 Co0.2 Mn0.2 (NCM622) (145.5mA h g-1 at 0.5 C, 200 cycles with 0.12% of capacity loss per cycle). The proposed synthetic approach presents new insights into wet-chemical engineering for sulfide-based solid-electrolytes (SEs), which is crucial for developing ASSBs from a commercial-scale perspective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.