Abstract

Modelling and optimising modern energy systems is inherently complex and often requires methods to simplify the discretization of the temporal domain. However, most of them are either (i) not well suited for systems with a high penetration of non-dispatchable renewables or (ii) too complex to be broadly adopted. In this work, we present a novel method that fits well with high penetration of renewables and different spatial scales. Furthermore, it is framework-independent and simple to implement. We show that, compared to the full time discretization, the proposed method saves >90% computation time with <1% error in the objective function. Moreover, it outperforms commonly used methods of modelling through typical days. Its practical usefulness is demonstrated by applying it to a case study about the optimal hydrogen production from renewable energy. The increased modelling fidelity results in a significantly cheaper design and reveals operational details otherwise hidden by typical days.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.