Abstract

In this paper, a three dimensional (3D) geometry based stochastic model (GBSM) considering planar antenna array is firstly proposed for the sixth generation (6 G) terahertz (THz) massive multiple-input multiple-output (MIMO) wireless communication systems. Then, a novel beam domain channel model (BDCM) is derived from the proposed GBSM based on the Fourier transform matrix from the spatial domain to the angle domain in horizontal and vertical directions simultaneously. The THz propagation characteristics, including non-negligible diffuse scattering and limited order of reflection, are considered in these two channel models. In addition, the proposed GBSM and BDCM can capture the spherical wavefront and spatial non-stationarity characteristics in massive MIMO channels by deriving steering vectors of near-field clusters and partly visible clusters, respectively. The angle-domain sparsity property of the BDCM can be observed, which helps reduce the complexity of the GBSM and improve the mathematical tractability. Typical statistical properties of the proposed GBSM and BDCM are derived and compared. The effects of the spherical wavefront on space-time-frequency correlation functions (STF-CFs) and channel capacity are also studied for the proposed GBSM and BDCM. The power leakage of the BDCM caused by the spherical wavefront and visible region (VR) is thoroughly analyzed. It is found that the statistical properties of the GBSM and BDCM fit well and are considerably influenced by the spherical wavefront and VRs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call