Abstract
We hypothesize that visualizing inner-ear systematically in both cochlear view (oblique coronal plane) and in mid-modiolar section (axial plane) and following three sequential steps simplifies, identification of inner-ear malformation types. Pre-operative computer-tomography (CT) scans of temporal bones of 112 ears with various inner ear malformation (IEM) types were taken for analysis. Images were analyzed using DICOM viewers, 3D slicer, and OTOPLAN®. The inner-ear was captured in the oblique-coronal plane for the measurement of length and width of cochlear basal turn which is also called as A-, and B-values respectively (Step 1). In the same plane, the angular-turns of lateral-wall (LW) of cochlear basal turn were measured (Step 2). As Step 3, the mid-modiolar section of inner ear was captured in the axial plane by following the A-value and perpendicular to cochlear view. From the mid-modiolar section, the outer-contour of inner ear was captured manually by following contrasting gray area between fluid filled and bony promontory and was compared to known resembling objects to identify IEM types (Step 3). Following reference values have emerged from our analysis: A-, and B-values (Step 1) on average are >8 mm and >5.5 mm respectively, in normal cochleae (NA), enlarged vestibular aqueduct syndrome (EVAS), incomplete partition (IP) type-I and -II, whereas it is <8 mm and <5.5 mm respectively, in IP type-III and cochlear hypoplasia (CH). Angular-turn of LW is consistently observed in cochlear basal turn (Step 2), is 540° in NA and EVAS, 450° in IP-II, and 360° in IP types I & III. In subjects with CH type, angular-turn of LW is either 360° or 450° or 540°. In true mid-modiolar section, outer-contour of inner-ear (Step-3), other than in CH and cystic inner-ear malformations, resembles recognizable shapes of known objects. Absence of EVA is an additional characteristic that confirms diagnosis of CH when the A-, B-values, and angular-turn of LW can be similar to other anatomical types. Drawing a straight line along posterior edge of internal auditory canal (IAC) in axial view can differentiate a true common cavity (CC) from cochlear aplasia-vestibular cavity (VC). Three-step process proposed in this study captures inner-ear in cochlear view as well in mid-modiolar sections visualizing key features of inner-ear in identification of IEM types. Level 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.