Abstract
ABSTRACTA new bioflocculant named pKr produced by hydrocarbonoclastic strain Kocuria rosea BU22S (KC152976) was investigated. Gas chromatography–flame ionization detector (GC-FID) analysis confirmed the high potential of the strain BU22S in the degradation of n-alkanes. Plackett–Burman experimental design and response surface methodology were carried out to optimize pKr production. Glucose, peptone and incubation time were found to be the most significant factors affecting bioflocculant production. Maximum pKr production was about 4.72 ± 0.02 g/L achieved with 15.61 g/L glucose, 6.45 g/L peptone and 3 days incubation time. Chemical analysis of pKr indicated that it contained 71.62% polysaccharides, 16.36% uronic acid and 2.83% proteins. Thin layer chromatography analysis showed that polysaccharides fraction consisted of galactose and xylose. Fourier transform infrared analysis revealed the presence of many functional groups, hydroxyl, carboxyl, methoxyl, acetyl and amide that likely contribute to flocculation. K. rosea pKr showed high flocculant potential using kaolin clay at different pH (2–11), temperature (0–100°C) and cation concentrations. The bioflocculant was particularly effective in flocculating soluble anionic dyes, Reactive Blue 4 and Acid Yellow, with a decolorization efficiency of 76.4% and 72.6%, respectively. The outstanding flocculating performances suggest that pKr could be useful for bioremediation applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.