Abstract
The enhanced receptor activator of nuclear factor-κB (NFκB) ligand (RANKL) and its receptor (RANK) signal have been reported to attenuate ischemic brain injury through inhibition of Toll-like receptor (TLR) 4-mediated inflammation. However, augmentation of the RANKL/RANK signal also accelerates osteoporosis, which is a potential problem in clinical use of RANKL. Therefore, we developed novel peptides, microglial healing peptides (MHPs), which were based on the DE and/or EF loop of RANKL. Among them, MHP1 was the most effective inhibitor of TLR4-induced inflammations in microglia/macrophages. The effects depended on RANK, as confirmed by knockdown experiments. In contrast to RANKL, MHP1 did not stimulate osteoclast differentiation. Unexpectedly, MHP1 inhibited RANKL-induced osteoclast differentiation. These findings suggested that MHP1 was a partial agonist of RANKL, and administration of MHP1 attenuated ischemic injury by decreasing inflammation. MHP1 could be a novel therapeutic agent for treating ischemic stroke.
Highlights
Regulation of post-ischemic inflammation is an important strategy for treating ischemic stroke[1]
We have recently found that the receptor activator of nuclear factor-kB (NFκB) ligand (RANKL)/receptor activator of nuclear factor-κB (NFκB) (RANK) is a novel signal involved in the regulation of microglial inflammation through Toll-like receptor (TLR) 46, which is a main damage-associated molecular pattern (DAMP) receptor in the ischemic brain[1]
Because TLR2 is another important receptor for DAMPs in the ischemic brain[1] and other studies have shown that RANKL inhibited the TLR2 signal[12,13], we further investigated whether MHP1 could inhibit TLR2-stimulated signalling in MG6 cells
Summary
Regulation of post-ischemic inflammation is an important strategy for treating ischemic stroke[1]. Novel signalling processes that control post-ischemic inflammation have been explored to develop new therapeutic approaches Among these approaches, we have recently found that the receptor activator of nuclear factor-kB (NFκB) ligand (RANKL)/receptor activator of NFκB (RANK) is a novel signal involved in the regulation of microglial inflammation through Toll-like receptor (TLR) 46, which is a main damage-associated molecular pattern (DAMP) receptor in the ischemic brain[1]. We have recently found that the receptor activator of nuclear factor-kB (NFκB) ligand (RANKL)/receptor activator of NFκB (RANK) is a novel signal involved in the regulation of microglial inflammation through Toll-like receptor (TLR) 46, which is a main damage-associated molecular pattern (DAMP) receptor in the ischemic brain[1] Both RANKL and RANK are expressed in activated microglia and macrophages (M/M) of ischemic brain tissue, and enhancement of the RANKL/RANK signal using recombinant RANKL (rRANKL) has been shown to reduce ischemic injury in mice[6]; this indicated that rRANKL could potentially be used as a therapeutic agent for treating ischemic stroke. We examined the effects of MHP in the ischemic stroke model in mice to assess the potential of the peptide for treating ischemic stroke
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.